Устройство асинхронного трехфазного двигателя


Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.

Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели - это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.

Устройство и принцип действия асинхронных электродвигателей

1. Устройство трехфазных асинхронных двигателей

Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра - намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

Рис. 1 Магнитопровод статора

В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой

Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

Рис. 4. Общий вид асинхронного двигателя серии 4А

Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения - это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

2. Принцип действия трехфазных асинхронных двигателей

Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.

Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя

Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом - вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.

Алиев И.И.

Устройство трехфазного асинхронного двигателя

Устройство статора. Асинхронный двигатель, как и всякая электрическая машина, состоит из статора и ротора (рис. 3.1, а). Статор имеет цилиндрическую форму. Он состоит из корпуса /, сердечника 2 и обмотки 3. Корпус литой, в большинстве случаев стальной или чугунный.  Сердечник статора собирается из тонких листов электротехнической стали (рис. 3.1,б).

Листы для машин малой мощности ничем  не покрываются, так как образующийся на листах оксидный слой является достаточной изоляцией. Собранные листы стали образуют пакет статора, который запрессовывается в корпус статора. На внутренней поверхности сердечника вырубаются пазы, в которые укладывается обмотка статора. Обмотки статора могут соединяться звездой или треугольником. Для осуществления таких соединений на корпусе двигателя имеется коробка, в которую выведены начала фаз С1, С2, СЗ и концы фаз С4, С5, С6. На рис. 3.2, а—в показаны схемы расположения этих выводов и способы соединения их между собой при соединении фаз звездой и треугольником. Схема соединений обмоток статора зависит от расчетного напряжения двигателя и номинального напряжения сети. Например,  в паспорте двигателя указано 380/220. Первое число соответствует схеме соединения обмоток в звезду при линейном напряжении в сети 380 В, а второе — схеме соединения в треугольник при линейном напряжении сети 220 В. В обоих случаях напряжение на фазе обмотки будет 220 В.

Корпус статора с торцов закрыт подшипниковыми щитами, в которые запрессованы подшипники вала ротора.

Устройство ротора. Ротор асинхронного двигателя состоит из стального вала 4 (рис. 3.1, а), на который напрессован сердечник 5, выполненный, как и сердечник статора, из отдельных листов электротехнической стали с выштампованными в них закрытыми или полузакрытыми пазами. Обмотка ротора бывает двух типов: короткозамкнутая и фазная – соответственно роторы называются короткозамкнутыми и фазными. Большее распространение имеют двигатели с короткозамкнутым ротором, так как они дешевле и проще в изготовлении и в эксплуатации. Токопроводящая часть такого ротора, названного М. О. Доливо-Добровольским ротором с беличьей клеткой, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов (рис. 3.3). Как правило, беличья клетка формируется путем заливки пазов ротора расплавленным алюминием.

Фазный ротор (рис.3.4) имеет три обмотки, соединенные в звезду. Выводы обмоток подсоединены к кольцам 2, закрепленным на валу 3. К кольцам при пуске прижимаются неподвижные щетки 4, которые подсоединяются к реостату 5.

Однофазный асинхронный двигатель: как устроен и работает

Само название этого электротехнического устройства свидетельствует о том, что электрическая энергия, поступающая на него, преобразуется во вращательное движение ротора. Причем прилагательное «асинхронный» характеризует несовпадение, отставание скоростей вращения якоря от магнитного поля статора.

Слово «однофазный» вызывает неоднозначное определение. Связано это с тем, что термин «фаза» в электрике определяет несколько явлений:

  • сдвиг, разность углов между векторными величинами;

  • потенциальный проводник двух, трех или четырехпроводной электрической схемы переменного тока;

  • одну из обмоток статора или ротора трехфазного двигателя либо генератора.

Поэтому сразу уточним, что однофазным электродвигателем принято называть тот, который работает от двухпроводной сети переменного тока, представленной фазным и нулевым потенциалом. Количество обмоток, вмонтированных в различных конструкциях статоров, на это определение не влияют.

Конструкция электродвигателя

По своему техническому устройству асинхронный двигатель состоит из:

1. статора — статической, неподвижной части, выполненной корпусом с расположенными на нем различными электротехническими элементами;

2. ротора, вращаемого силами электромагнитного поля статора.

Механическое соединение этих двух деталей выполнено за счет подшипников вращения, внутренние кольца которых посажены на подогнанные гнезда вала ротора, а внешние вмонтированы в защитные боковые крышки, закрепляемые на статоре.

Ротор

Его устройство у этих моделей такое же, как у всех асинхронных двигателей: на стальном валу смонтирован магнитопровод из шихтованных пластин на основе мягких сплавов железа. На его внешней поверхности выполнены пазы, в которые вмонтированы стержни обмоток из алюминия или меди, закороченные по концам на замыкающие кольца.

В обмотке ротора протекает электрический ток, индуцируемый магнитным полем статора, а магнитопровод служит для хорошего прохождения создаваемого здесь же магнитного потока.

Отдельные конструкции ротора у однофазных двигателей могут быть выполнены из немагнитных или ферромагнитных материалов в форме цилиндра.

Статор

Конструкция статора также представлена:

  • корпусом;

  • магнитопроводом;

  • обмоткой.

Его основное назначение заключается в генерировании неподвижного или вращающегося электромагнитного поля.

Статорная обмотка обычно состоит из двух контуров:

1. рабочего;

2. пускового.

У самых простых конструкций, предназначенных для ручной раскрутки якоря, может быть выполнена всего одна обмотка.

Принцип работы асинхронного однофазного электрического двигателя

С целью упрощения изложения материала представим, что обмотка статора выполнена всего одним витком петли. Ее провода внутри статора разносят по кругу на 180 угловых градусов. По ней проходит переменный синусоидальный ток, имеющий положительные и отрицательные полуволны. Он создает не вращающееся, а пульсирующее магнитное поле.

Как возникают пульсации магнитного поля

Разберем этот процесс на примере протекания положительной полуволны тока в моменты времени t1, t2, t3.

Она проходит по верхней части токопровода по направлению к нам, а по нижней — от нас. В перпендикулярной плоскости, представленной магнитопроводом, вокруг проводника возникают магнитные потоки Ф.

Изменяющиеся по амплитуде токи в рассматриваемые моменты времени создают разные по величине электромагнитные поля Ф1, Ф2, Ф3. Поскольку ток в верхней и нижней половине один и тот же, но виток изогнут, то магнитные потоки каждой части направлены встречно и уничтожают действие друг друга. Определить это можно по правилу буравчика или правой руки.

Как видим, при положительной полуволне вращения магнитного поля не наблюдается, а происходит только его пульсация в верхней и нижней части провода, которая еще и взаимно уравновешивается в магнитопроводе. Этот же процесс происходит при отрицательном участке синусоиды, когда токи изменяют направление на противоположное.

Поскольку вращающееся магнитное поле отсутствует, то и ротор останется неподвижным, ибо нет сил, приложенных к нему для начала вращения.

Как создается вращение ротора в пульсирующем поле

Если придать ротору вращение, хотя бы рукой, то он будет продолжать это движение. Для объяснения этого явления покажем, что суммарный магнитный поток изменяется по частоте синусоиды тока от нуля до максимального значения в каждом полупериоде (с изменением направления на противоположное) и состоит из двух частей, образуемых в верхней и нижней ветвях, как показано на рисунке.

Магнитное пульсирующее поле статора состоит из двух круговых с амплитудой Фмакс/2 и двигающихся в противоположных направлениях с одной частотой.

nпр=nобр=f60/p=1.

В этой формуле обозначены:

  • nпр и nобр частоты вращения магнитного поля статора в прямом и обратном направлениях;

  • n1 — скорость вращающегося магнитного потока (об/мин);

  • p — число пар полюсов;

  • f — частота тока в обмотке статора.

Теперь рукой придадим вращение двигателю в одну сторону, и он сразу подхватит движение за счет возникновения вращающегося момента, вызванного скольжением ротора относительно разных магнитных потоков прямого и обратного направлений.

Примем, что магнитный поток прямого направления совпадает с вращением ротора, а обратный, соответственно, будет противоположен. Если обозначить через n2 частоту вращения якоря в об/мин, то можно записать выражение n2 < n1.

При этом обозначим Sпр = (n1-n2)/n1 = S.

Здесь индексами S и Sпр названы скольжения асинхронного двигателя и ротора относительного магнитного потока прямого направления.

У обратного потока скольжение Sобр выразится аналогичной формулой, но со сменой знака n2.

Sобр = (n1 - (-n2))/n1 = 2-Sпр.

В соответствии с законом электромагнитной индукции под действием прямого и обратного магнитных потоков в обмотке ротора станет действовать электродвижущая сила, которая создаст в ней токи таких же направлений I2пр и I2обр.

Их частота (в герцах) будет прямо пропорциональна величине скольжения.

f2пр=f1∙Sпр;

f2обр=f1∙Sобр.

Причем частота f2обр, образованная наведенным током I2обр, значительно превышает частоту f2пр.

Например, электродвигатель работает от сети 50 Гц с n1=1500, а n2=1440 оборотов в минуту. Его ротор имеет скольжение относительно магнитного потока прямого направления Sпр=0,04 и частоту тока f2пр=2 Гц. Обратное же скольжение Sобр=1,96, а частота тока f2обр=98 Гц.

На основании закона Ампера при взаимодействии тока I2пр и магнитного поля Фпр появится вращающий момент Мпр.

Мпр=сМ∙Фпр∙I2пр∙cosφ2пр.

Здесь величина постоянного коэффициента сМ зависит от конструкции двигателя.

При этом также действует обратный магнитный поток Мобр, который вычисляется по выражению:

Мобр=сМ∙Фобр∙I2обр∙cosφ2обр.

В итоге взаимодействия этих двух потоков появится результирующий:

М= Мпр-Мобр.

Внимание! При вращении ротора в нем наводятся токи разной частоты, которые создают моменты сил с разными направлениями. Поэтому якорь двигателя будет совершать вращение под действием пульсирующего магнитного поля в ту сторону, с которой он начал вращение.

Во время преодоления однофазным двигателем номинальной нагрузки создается небольшое скольжение с основной долей прямого крутящего момента Мпр. Противодействие тормозного, обратного магнитного поля Мобр сказывается совсем незначительно из-за различия частот токов прямого и обратного направлений.

f2обр обратного тока значительно превышает f2пр, а создаваемое индуктивное сопротивление Х2обр сильно превышает активную составляющую и обеспечивает большое размагничивающее действие обратного магнитного потока Фобр, который в итоге этого уменьшается.

Поскольку коэффициент мощности у двигателя под нагрузкой небольшой, то обратный магнитный поток не может оказать сильное воздействие на вращающийся ротор.

Когда же одна фаза сети подана на двигатель с неподвижным ротором (n2=0), то скольжения, как прямое, так и обратное равны единице, а магнитные поля и силы прямого и обратного потоков уравновешены и вращения не возникает. Поэтому от подачи одной фазы невозможно раскрутить якорь электродвигателя.

Как быстро определить частоту вращения двигателя:

Как создается вращение ротора у однофазного асинхронного двигателя

За всю историю эксплуатации подобных устройств разработаны следующие конструкторские решения:

1. ручная раскрутка вала рукой или шнуром;

2. использование дополнительной обмотки, подключаемой на время запуска за счет омического, емкостного или индуктивного сопротивления;

3. расщепление короткозамкнутым магнитным витком магнитопровода статора.

Первый способ использовался в начальных разработках и не стал применяться в дальнейшем из-за возможных рисков получения травм при запуске, хотя он не требует подключения дополнительных цепочек.

Применение фазосдвигающей обмотки в статоре

Чтобы придать начальное вращение ротору к статорной обмотке дополнительно на момент запуска подключают еще одну вспомогательную, но только сдвинутую по углу на 90 градусов. Ее выполняют более толстым проводом для пропускания бо́льших токов, чем протекающие в рабочей.

Схема подключения такого двигателя показана на рисунке справа.

Здесь для включения применяется кнопка типа ПНВС, которая специально создана для таких двигателей и широко использовалась в работе стиральных машин, выпускаемых при СССР. У этой кнопки сразу включаются 3 контакта таким образом, что два крайних после нажатия и отпускания остаются зафиксированы во включенном состоянии, а средний — кратковременно замыкается, а потом под действием пружины возвращается в исходное положение.

Замкнутые же крайние контакты можно отключить нажатием на соседнюю кнопку «Стоп».

Кроме кнопочного выключателя для отключений дополнительной обмотки в автоматическом режиме используются:

1. центробежные переключатели;

2. дифференциальные или токовые реле;

3. механические таймеры времени.

Для улучшения запуска двигателя под нагрузкой применяются дополнительные элементы в фазосдвигающей обмотке.

Подключение однофазного двигателя с пусковым сопротивлением

В такой схеме к статорной дополнительной обмотке последовательно монтируется омическое сопротивление. При этом намотка витков выполняется биффилярным способом, обеспечивающим коэффициент самоиндукции катушки очень близким к нулю.

За счет выполнения этих двух приемов при прохождении токов по разным обмоткам между ними возникает сдвиг по фазе порядка 30 градусов, чего вполне достаточно. Разность углов создается за счет изменения комплексных сопротивлений в каждой цепи.

При этом методе еще может встречаться пусковая обмотка с заниженной индуктивностью и увеличенным сопротивлением. Для этого применяют намотку с маленьким числом витков провода заниженного поперечного сечения.

Подключение однофазного двигателя с конденсаторным запуском

Емкостной сдвиг токов по фазе позволяет создать кратковременное подключение обмотки с последовательно соединенным конденсатором. Эта цепочка работает только во время выхода двигателя на режим, а затем отключается.

У конденсаторного запуска создается наибольший крутящий момент и более высокий коэффициент мощности, чем при резистивном или индуктивном способе запуска. Он может достигать величины 45÷50% от номинального значения.

В отдельных схемах к цепочке рабочей обмотки, которая постоянно включена, тоже добавляют емкость. За счет этого добиваются отклонения токов в обмотках на угол порядка π/2. При этом в статоре сильно заметен сдвиг максимумов амплитуд, который обеспечивает хороший крутящий момент на валу.

За счет этого технического приема двигатель при пуске способен выработать больше мощности. Однако, такой метод используют только с приводами тяжелого запуска, например, для раскрутки барабана стиральной машины, заполненного бельем с водой.

Конденсаторный запуск позволяет изменять направление вращения якоря. Для этого достаточно сменить полярность подключения пусковой или рабочей обмотки.

Подключение однофазного двигателя с расщепленными полюсами

У асинхронных двигателей с небольшой мощностью порядка 100 Вт используют расщепление магнитного потока статора за счет включения в полюс магнитопровода короткозамкнутого медного витка.

Разрезанный на две части такой полюс создает дополнительное магнитное поле, которое сдвинуто от основного по углу и ослабляет его в месте охваченного витком. За счет этого создается эллиптическое вращающееся поле, образующее момент вращения постоянного направления.

В подобных конструкциях можно встретить магнитные шунты, выполненные стальными пластинками, которые замыкают края наконечников статорных полюсов.

Двигатели подобных конструкций можно встретить в вентиляторных устройствах обдува воздуха. Они не обладают возможностью реверса.

12.3. Устройство трехфазных асинхронных двигателей

Все трехфазные асинхронные двигатели имеют конструктивно одинаковые статоры и различаются выполнением обмотки ротора. По конструкции обмотки ротора эти двигатели подразделяются на два типа: с короткозамкнутой обмоткой (короткозамкнутые) и с фазной обмоткой (так называемые двигатели с фазным ротором или с контактными кольцами).

Трехфазный двигатель предназначен для включения в трехфазную сеть, поэтому он должен иметь обмотку статора, состоящую из трех фазных обмоток, при прохождении через которые токи, поступающие из трехфазной сети, возбуждают вращающееся магнитное поле. Для усиления магнитного поля и придания ему необходимой формы сер­дечник статора и ротора выполняют из электротехнической стали. Для уменьшения потерь в стали сердечники собирают из тонких листов электротехнической стали, изолированных друг от друга слоем лака.

На рис. 12.4 показана конструктивная схема поперечного разреза асинхронного двигателя, состоящего из корпуса (станина) статора 1, сердечника статора 2, обмотки статора 3, сердечника ротора 4, обмоток ротора 5, воздушного зазора между внутренней поверхностью сердечника статора и поверхностью ротора 6, вентиляционных каналов 7, вала ротора 8. К корпусу двигателя, который отли­вают из чугуна или стали, прикрепляют все остальные части двигателя. Сердеч­ник статора имеет вид полого цилиндра с продольными пазами по внутренней поверхности. В пазы укладываются три одинаковые фазные обмотки, сдвинутые относительно друг друга на угол 120°. Внутри корпуса сердечник статора укреп­ляется с помощью прокладок из не.магнитного материала для того, чтобы не допускать образования в нем маг­нитного поля и, следовательно, вихре­вых токов.

Ранее было установлено, что вращающееся магнитное поле при р = 1 и f = 50 Гц имеет частоту вращения n = 3000 об/мин. Если же требуется меньшая частота вращения, то необходимо соответственно уменьшить частоту вращения поля. Для этого статоры выполняют с многополюсными обмотками (р > 1). В многополюсной обмотке каждой паре полюсов вращающегося поля соответствуют три катушки. Если же необходимо иметь р пар полюсов, то число катушек обмотки статора равно 3р, т. е. по р катушек в каждой фазной обмотке.

Рассмотрим устройство роторов асинхронных двигателей. Коротко-замкнутый ротор состоит из стального вала, цилиндрического сердеч­ника, насаженного на вал ротора, короткозамкнутой обмотки и лопастей, осуществляющих вентиляцию машины.

Ротор асинхронного двигателя, как и роторы других электрических машин, удерживается с помощью боковых подшипниковых щитов, прикрепленных болтами к корпусу машины. Два боковых подшипниковых щита имеют центральные отверстия для подшипников, в которых вра­щается ротор. На рис. 12.5, а показан продольный разрез асинхронного двигателя с короткозамкнутым ротором, на рис. 12.5, б — схема его включения. На рисунке 1 — корпус; 2 — сердечник статора; 3 — лобовая часть обмотки статора, т. е. часть, находящаяся вне пазов; 4 - сердечник ротора; 5 — вал; 6 — подшипник; 7 — подшипниковый щит.

Сердечник ротора имеет вдоль поверхности продольные пазы, в которые укладывается обмотка, представляющая собой неизолирован­ные медные или алюминиевые стержни, замкнутые накоротко на торцах ротора

двумя торцовыми кольцами.

Если эту обмотку мысленно вынуть из стального цилиндрического сердечника ротора, то она будет выглядеть как беличья клетка (рис. 12.6). Следует отметить, что обмотка короткозамкнутого ротора не изолируется от сердечника из-за того, что между удельными сопротивлениями обмотки и стали сердечника имеется зна­чительная разница и индуцированные в обмотке токи замы­каются в основном по ее стержням и торцовым кольцам.

В асинхронных двигателях средней и малой мощности коротко-замкнутую обмотку ротора получают путем заливки расплавленного алюминиевого сплава в продольные пазы сердечника. Вместе с обмот­кой отливают также торцовые короткозамыкающие кольца и лопасти для вентиляции машины.

У двигателей с фазным ротором в продольные пазы сердечника ротора укладывают три одинаковые изолированные обмотки (фазы), выполненные по типу статорной обмотки, т, е. смещенные между собой в пространстве на 120°, причем концы фаз объединены в общую точку, образуя звезду, а начала присоединены к трем контактным кольцам, размещенным на валу. С помощью щеток, прижимающихся к контактным кольцам, в каждую фазу обмотки ротора можно ввести добавочное активное сопротивление от трехфазного реостата. С увеличением актив­ного сопротивления обмотки ротора уменьшается пусковой ток, т. е. облегчается пуск двигателя, а также увеличивается пусковой момент вплоть до максимального значения. Кроме того, изменяя с помощью реостата активное сопротивление цепей ротора, можно регулировать частоту вращения двигателя. Все это позволяет применять двигатели с фазным ротором для привода машин и механизмов, требующих при пуске больших пусковых моментов (компрессоры, грузоподъемные машины и др.).

Трехфазный асинхронный двигатель с фазным ротором (рис. 12.7) состоит из обмотки статора 1, обмотки ротора 2, вала 3, контактных колец 4, реостата 5.

По конструктивному выполнению двигатели с короткозамкнутым ротором проще двигателей с контактными кольцами. Они более надежны в работе, однако имеют сравнительно небольшой пусковой момент. Поэтому их применяют для привода машин, для которых не требуются большие пусковые моменты, а также машин и механизмов небольшой мощности. Асинхронные двигатели малой мощности и микродвигатели выполняют также с короткозамкнутыми роторами.


Смотрите также


Интересующую Вас информацию Вы можете уточнить у наших специалистов, заполнив форму, приведенную ниже. Мы с радостью Вас проконсультируем!
Почта:
Ваше Имя:
Сообщение:
30+5