Установка турбины на ниву шевроле своими руками


Турбонаддув на Chevy Niva. Пилюля от дохлости — журнал За рулем

Турбонаддув на Chevy Niva. Пилюля от дохлости

Постепенно прибавляли объем — 1.5–1.6, наконец — 1.7 литра, карбюратор заменили впрыском (самое решительное свершение за всю историю мотора). Именно таким двигателем комплектовали последние «классические» «Нивы» 21214. Почти без изменений он перекочевал на новую модель — 2123, Chevy Niva.

Старый двигатель устраивал не всех нивоводов, тем более — владельцев Chevy. Невысокая мощность и маленький крутящий момент порой просто раздражают водителя. Кроме того, верховой двигатель езды по-внедорожному, «на низах», не переносит — глохнет. И пока АВТОВАЗ внедряет 2-литровый двигатель Opel, призванный спасти положение, некоторые прибегают к тюнингу.

Рынок предлагает несколько вариантов форсирования «Нивских» двигателей — от классической замены валов, поршней, форсунок, перепрошивки, доработки впуска и выпуска до установки нагнетателей. Не так давно столичная компания BiPower разработала тюнинг-программу по адаптации к мотору 2123 импортного механического нагнетателя. И все бы хорошо, если бы не цена — чуть ли не в половину стоимости автомобиля. Другие предложения такого типа тоже недешевы.

В то же время другая московская фирма TDV Motorsport разработала турбокит на основе импортных комплектующих, установила на «клиентский» автомобиль и предлагает переоборудование по той же схеме других Chevy Niva. Стоимость базового комплекта вместе с работой объявлена на уровне 2500 долларов. Впрочем, она может и увеличиться, если клиент пожелает получить более 135 л.с. и 213 Н.м. (данные с моторного стенда Lucasturbo). Но стоит ли?

Даже в этом варианте автомобиль едет так, что порой приходится убеждать себя: это именно Niva, а не… Subaru Impreza, например. Схожи и звуки (посвист и всхлипы наддува), и вибрации. Но чтобы вспомнить, кто есть кто, достаточно отвести взгляд от дороги… Правда, без привычки к машине иллюзия все равно потом возвращается. Благодаря наддуву и полному приводу на скользком покрытии автомобиль разгоняется так лихо, что «курят» даже значительно более мощные моноприводники.

Автомобиль впечатляет и на фоне «заряженных» турбонаддувных «японцев». Слишком велика разница между базовым и тюнинговым вариантами. Дистанция огромного размера.

Если не заигрываться, автомобилем управлять довольно просто — пусть конструкторы Chevy Niva и «забыли» про двигатель, перед запуском 2123 они модернизировали и рулевое, и трансмиссию, и тормозную систему, и подвеску. Правда, последние два пункта из-за тюнинга явно нуждаются в ревизии — и здесь нет конструкторского просчета. Просто тольяттинские инженеры не рассчитывали на почти двойное увеличение мощности и крутящего момента. Интересно, что несмотря на серию беспощадных тестов у автомобиля цела родная трансмиссия — она-то явно сделана с запасом надежности. Мастера уверяли, что автомобиль спокойно выдерживает даже такое варварское упражнение, как «заплыв» по снежной целине высотой под кромку капота. Со скоростью отнюдь не черепашьей!

Тюнинг тормозов и подвески запланирован на будущее, а легкосплавные диски уже красуются. Владелец откровенно презирает пластиковые обвесы для внедорожников. Одно с другим, по его мнению, не сочетается. А вот к состоянию машины он относится трепетно, знает наперечет все сколы на кузове и досадует из-за каждой царапины.

Как это принято говорить, все отличия от «стандарта» — под капотом. На самом виду, справа от двигателя, под термозащитным экраном, стоит «улитка» Garrett, от которой тянутся рукава из нержавейки. На резиновом «аппендиксе» — клапан вестгейта… Где-то внизу прячется интеркуллер. Перед тест-поездкой Владимир Чемров, главный конструктор TDV Motorsport, установил фильтр пониженного сопротивления в штатную коробку, сняв верхнюю крышку. Пусть не очень красиво, но практично. Стандартные фильтры с этим мотором быстро выходят из строя.

Правда, не определено, сколько выдержит эта конструкция. Niva прошла немного, и судить о ресурсе категорически нельзя. Однако то, как испытывали автомобиль тюнеры, позволяет предположить, что в спокойном режиме, без постоянного «педаль в полу», он отработает несколько лет.

Олег Токарь, владелец турбонаддувной Chevy Niva, главный инженер:

— Оффроуд — одно из моих увлечений. Были самые разные машины — и наши, и импортные. Естественно, и «Нивы». Когда собрался купить новую, остановился на Chevy Niva. Купил машину, обкатывал — и вроде все устраивало. Потом привык, стало не хватать двигателя. Стандартный слаб даже для города, не говоря уже о бездорожье. Стал рассматривать варианты форсировки. Самым интересным показался наддув. В сети посмотрел предложения, которые есть на эту тему, обратился в несколько фирм. Они «порадовали» ценами и при этом не брали на себя обязательств. В итоге вышел на ребят из TDV. Приехал — они посмотрели машину и начали работу. Результат перед вами.Я очень доволен. Хотя готовили машину долго, видел, как они стараются. Теперь ее просто не узнать — наддув изменил машину, оживил ее. Едет так, что иногда становится страшновато. Мне еще придется привыкать к такой динамике, а у ребят из TDV уже есть планы поставить турбину побольше, еще форсировать. Может быть, когда-нибудь и решусь, но точно не скоро. Кстати, они собрались покупать новую Chevy Niva для себя! Я считаю, это показатель.Руководство по установке турбины

| Manualzz

  • Категории
    • Младенец и дети
    • Компьютеры и электроника
    • Развлечения и хобби
    • Модный стиль
    • Еда, напитки и табак
    • Здоровье и Красота
    • Домой
    • Промышленное и лабораторное оборудование
    • Медицинское оборудование
    • Офис
    • Старый
    • Забота о животных
    • Спорт и отдых
    • Транспортные средства и аксессуары
    Лучшие типы
    Аудио и домашний кинотеатр
    Камеры и видеокамеры
    Компьютерные кабели
    Компьютерные компоненты
    Компьютеры
    Устройства ввода данных
    Хранение данных
    Сеть
    Печать и сканирование
    Проекторы
    Умные носимые устройства
    Программное обеспечение
    Телекоммуникации и навигация
    телевизоров и мониторов
    Гарантия и поддержка
    другое →
    Ведущие бренды
    Acer
    AEG
    Aeg-Electrolux
    канон
    Dell
    Electrolux
    Fujitsu
    Хама
    л.с.
    LG
    Panasonic
    Philips
    Samsung
    Sony
    Торо
    другое →
    Лучшие типы
    Информационно-развлекательная система
    Музыкальные инструменты
    Видеоигры и приставки
    другое →
.

4 различия между современными и старыми автомобильными двигателями

Вы когда-нибудь задумывались, в чем разница между старыми и новыми автомобильными двигателями? Как и в случае с любой другой технологией, как и следовало ожидать, наблюдается постепенное повышение эффективности и сложности. Как выясняется довольно много.

Несмотря на то, что основная концепция осталась относительно неизменной, современные автомобили со временем претерпели ряд небольших улучшений. В следующей статье мы сосредоточимся на 4 интересных примерах.

Давайте заглянем под капот времени, не так ли?

Если не сломано, не чини

Основные принципы самых первых автомобилей используются и сегодня. Одно из основных отличий заключается в том, что современные автомобили - это результат стремления улучшить мощность двигателей и, в конечном итоге, топливную экономичность. Отчасти это было вызвано рыночным давлением со стороны потребителей, а также более крупными рыночными силами.

Было бы полезно подумать об аналогии между волком и собакой. У них одно и то же наследие, у них схожие характеристики, но одному из них в современном пригороде придется нелегко, а другому будет процветать.

Прежде чем мы начнем, мы дадим краткий обзор того, как работает двигатель внутреннего сгорания.

Герой раннего паровоза Александрии. Источник: Research Gate

Двигатель внутреннего сгорания, по сути, берет источник топлива, такой как бензин, смешивает его с воздухом, сжимает его и воспламеняет. Это вызывает серию небольших взрывов, которые, в свою очередь, приводят в движение поршни вверх и вниз. Эти поршни прикреплены к коленчатому валу, который преобразует возвратно-поступательное поступательное движение поршней во вращательное движение путем поворота коленчатого вала.Коленчатый вал, в свою очередь, передает это движение через трансмиссию, которая передает мощность на колеса автомобиля. Все просто, правда?

Ну, как и следовало ожидать, это намного сложнее.

Вот простое объяснение основ:

Интересно, что преобразование возвратно-поступательной силы в силу вращения не является чем-то новым. Очень ранний паровой двигатель был изобретен героем Александрии в I веке нашей эры (на фото выше).

Считается, что еще более старые устройства коленчатого вала возникли во времена династии Хань в Китае.

1. Современные двигатели более эффективны

Топливо, как бензин, не особенно эффективно. Из всей потенциальной химической энергии в нем около 14-30% превращается в энергию, которая фактически приводит в движение автомобиль. Остальное теряется из-за холостого хода, паразитных потерь, тепла и трения.

Современные двигатели прошли долгий путь, чтобы извлечь как можно больше энергии из топлива.Например, технология прямого впрыска не смешивает топливо и воздух до достижения цилиндра, как в старых двигателях. Напротив, топливо впрыскивается непосредственно в цилиндры. Это дает улучшение примерно на 1% и .

Турбокомпрессоры используют выхлопные газы для питания турбины, которая нагнетает дополнительный воздух (то есть больше кислорода) в цилиндры для дальнейшего повышения эффективности до 8% . Регулируемые фазы газораспределения и отключение цилиндров дополнительно повышают эффективность, позволяя двигателю использовать столько топлива, сколько ему действительно нужно.

2. Ultimate Power

Как однажды сказал Джереми Кларксон: «Сегодня все дело в MPG, а не в MPH», или, может быть, это был не он.

Современные автомобили лучше экономят топливо, они также намного мощнее.

Например, Шевроле Малибу 1983 года выпуска имел 3,8-литровый двигатель V-6 , который мог выдавать 110 лошадиных сил . Для сравнения, версия 2005 года имела 2,2-литровый рядный четырехцилиндровый двигатель мощностью 144 лошадиных силы. Не так уж и плохо.

3. Размер - это все, или нет?

Этот привод, не каламбур, для повышения эффективности двигателей также со временем уменьшился в размерах. Это не совпадение. Производители автомобилей поняли, что не нужно делать что-то большее, чтобы сделать его мощнее.

Все, что вам нужно сделать, это заставить объект работать умнее. Та же технология, которая сделала двигатели более эффективными, имела побочный эффект - они стали меньше.

Грузовики Ford F-серии - отличный тому пример.У F-150 было две версии в 2011 году. 3,5-литровый двигатель V-6 мощностью 365 лошадиных сил и 5,0-литровый V-8 мощностью 360 лошадиных сил .

Хорошо, можно сказать, но разве не было 6,2-литрового V-8 , который давал 411 лошадиных сил r? Да, но факт, что двигатель V-6 может почти конкурировать с более крупным V-8 по мощности, говорит о многом.

4. Отказ от старых

Современные двигатели также являются результатом постепенной замены механических частей на электронные.Это связано с тем, что электрические детали, как правило, менее подвержены износу, чем механические.

По сути, они также требуют менее частой настройки. Такие детали, как насосы, все чаще заменяются на их аналоговые предшественники с электронным управлением.

Карбюраторы заменены на дроссельные заслонки и электронные системы впрыска топлива. Распределители и крышки заменены на независимые катушки зажигания, управляемые ЭБУ. Кроме того, датчики более или менее контролируют все.

Вы также можете утверждать, что новые автомобили менее безопасны.

Последнее слово

Хотя на базовом уровне современные и старые автомобильные двигатели работают по одному и тому же принципу, современные двигатели со временем претерпели множество постепенных улучшений. Основным движущим фактором была гонка за эффективность над мощностью. Хороший набор побочных эффектов привел к тому, что современные двигатели стали относительно более мощными и, как правило, меньше. Постоянно растущая зависимость от электронных систем управления и мониторинга постепенно заменяет аналоговые, к лучшему или к худшему.

В целом современные автомобильные двигатели более эффективны, меньше по размеру, относительно мощнее, умнее и менее подвержены неизбежным механическим сбоям. С другой стороны, ремонт и обслуживание теперь требуют более высокой квалификации и требуют много времени. Если цена за повышение эффективности - это увеличение признания сложности, судить можете только вы.

Через: Team-BHP, HowStuffWorks

.

Авиационные и сверхмощные газовые турбины

Поиск

span {text-overflow: ellipsis; display: inline-block; max-width: 90%; overflow: hidden; position: relative; padding-left: 4px} .addsearch-active-filters .item button {border: none; background : transparent; cursor: pointer; font-size: 14px; padding: 0 .5em} @media screen и (max-width: 480px) {. addsearch-active-filters .item {padding: 4px 6px; font-size: 14px } .addsearch-active-filters.кнопка элемента {font-size: 18px} .addsearch-active-filters .item button [data-clearall = true] {font-size: 16px; padding: 1px 6px; margin-left: 0}}. addsearch-filters-tabs кнопка, .addsearch-filters-tags кнопка {-webkit-appearance: none; -moz-appearance: none; margin: 0; padding: .5em 1.5em; display: inline-block; cursor: pointer; background: #fff} .addsearch-filters-tabs .tabs {display: block; text-align: left; display: -webkit-box; display: flex; -webkit-box-orient: horizontal; -webkit-box-direction: normal; flex- direction: row; flex-wrap: nowrap}.addsearch-filters-tabs .tabs button {border: 1px solid #dedede; border-right: 0; font-size: 16px; float: left} .addsearch-filters-tabs .tabs button.active {background-color: #eee } .addsearch-filters-tabs .tabs button: first-child {border-radius: 5px 0 0 5px} .addsearch-filters-tabs .tabs button: last-child {border-radius: 0 5px 5px 0; border-right : 1px solid #dedede} @media (max-width: 960px) {. Addsearch-filters-tabs .tabs {overflow-x: scroll; white-space: nowrap; padding: 0 0 10px} .addsearch-filters-tabs. кнопка вкладок {padding: 7px 15px; font-size: 14px}}.addsearch-filters-tabs .tabs: after {content: ""; visibility: hidden; display: block; height: 0; clear: both} .addsearch-filters-tags button {margin: 2px 0; border-radius: 5px; border: 1px solid #dedede; font-size: 12px; padding: .25em .75em; text-transform: uppercase; color: # 444} экран @media и (max-width: 960px) {. addsearch-filters-tags кнопка {font-size: 14px; padding: 6px 8px}}. addsearch-filters-tags button.active {background-color: #eee}.]]>

.

Как работает солнечная электростанция?

Солнечная электростанция - это любой тип объекта, который преобразует солнечный свет либо напрямую, как фотоэлектрические установки, либо косвенно, как солнечные тепловые электростанции, в электричество.

Они бывают разных «вкусов», в каждом из которых используются отдельные методы, позволяющие использовать силу солнца.

В следующей статье мы кратко рассмотрим различные типы солнечных электростанций, которые используют животворный солнечный свет для производства электроэнергии.

1. Фотогальваника

Фотогальванические электростанции используют большие площади фотоэлектрических элементов, известных как фотоэлектрические элементы или солнечные элементы, для прямого преобразования солнечного света в полезную электроэнергию. Эти элементы обычно изготавливаются из кремниевых сплавов и являются технологией, с которой большинство людей знакомо - есть вероятность, что у вас есть один на вашей крыше.

Сами панели бывают разных форм:

- Кристаллические солнечные панели - как следует из названия, эти типы панелей сделаны из кристаллического кремния.Они могут быть монокристаллическими, поли- или поликристаллическими. Как показывает практика, монокристаллические версии более эффективны ( около 15-20%, ), но дороже, чем их альтернативы (как правило, имеют эффективность 13-16%, ), но со временем прогресс сокращает разрыв между ними.

- Тонкопленочные солнечные панели. Эти типы панелей состоят из ряда пленок, которые поглощают свет в различных частях электромагнитного спектра. Как правило, они изготавливаются из аморфного кремния (aSi), теллурида кадмия (CdTe), сульфида кадмия (CdS) и диселенида меди, индия (галлия).Этот тип панелей идеально подходит для применения в качестве гибких пленок на существующих поверхностях или для интеграции в строительные материалы, такие как кровельная черепица.

Эти типы станций вырабатывают электроэнергию, которая затем, как правило, напрямую подается в национальную сеть.

ФЭ-панель в Марке, Италия. Источник: CA 'Marinello 1 / Flickr

Эти типы электростанций обычно состоят из следующих основных компонентов: -

- Солнечные панели, преобразующие солнечный свет в полезное электричество.Они имеют тенденцию генерировать постоянный ток напряжением до 1500 В ;

- Этим предприятиям нужны инвесторы для преобразования постоянного тока в переменный ток

- У них обычно есть какая-то система мониторинга для контроля и управления заводом и;

- Они напрямую подключены к какой-либо внешней электросети.

- Если установка вырабатывает более 500 кВт и , они обычно также используют повышающие трансформаторы.

1.1 Как работает солнечная фотоэлектрическая электростанция?

Солнечные фотоэлектрические электростанции работают так же, как небольшие бытовые фотоэлектрические панели или крошечные фотоэлектрические панели на вашем калькуляторе, но на стероидах.

Большинство солнечных фотоэлектрических панелей изготовлено из полупроводниковых материалов, обычно из кремния. Когда фотоны от солнечного света попадают на полупроводниковый материал, генерируются свободные электроны, которые затем могут протекать через материал, создавая постоянный электрический ток.

Это известно как фотоэффект в физике. Затем постоянный ток необходимо преобразовать в переменный ток (AC) с помощью инвертора, прежде чем его можно будет напрямую использовать или подавать в электрическую сеть.

Фотоэлектрические панели отличаются от других солнечных электростанций, поскольку они используют фотоэффект напрямую, без необходимости в других процессах или устройствах.Например, не нужен жидкий теплоноситель, такой как вода, как в солнечных тепловых установках.

Фотоэлектрические панели не концентрируют энергию, они просто преобразуют фотоны в электричество, которое затем передается в другое место.

2. Солнечные тепловые электростанции

Солнечные тепловые электростанции, с другой стороны, фокусируют или собирают солнечный свет таким образом, чтобы генерировать пар для питания турбины и выработки электроэнергии. Солнечные тепловые электростанции также можно подразделить на три различных типа: -

2.1 Линейные, параболические желобные солнечные тепловые и солнечные электростанции

Это наиболее распространенная форма солнечной электростанции, которая характеризуется использованием полей либо линейных U-образных параболических желобных коллекторов, либо солнечных тарелок. Эти типы объектов обычно состоят из большого «поля» параллельных рядов солнечных коллекторов.

Обычно они состоят из трех дискретных типов систем:

2.1.1. Системы параболических желобов

В параболических желобах используются отражатели в форме параболы, которые способны фокусировать на коллекторе от 30 до 100-кратных нормальных уровней солнечного света.Этот метод используется для нагрева особого типа жидкости, которая затем собирается в центральном месте для генерирования перегретого пара под высоким давлением.

Эти системы наклоняются, чтобы следить за солнцем в течение дня. Благодаря своей параболической форме отражатели такого типа способны фокусировать на коллекторе от 30 до 100 раз нормальной интенсивности солнечного света.

Самая долго действующая солнечная тепловая установка в мире, система производства солнечной энергии (SEGS) в пустыне Мохаве, Калифорния, является одной из таких электростанций.Первая установка, SEGS 1, была построена в 1984 году и проработала до 2015 года, а вторая, SEG 2, работала с 1984 по 2015 годы.

Пример системы параболического желоба. Источник: USA.Gov/Wikimedia Commons

Последняя построенная электростанция, SEGS IX, с мощностью выработки электроэнергии 92 мегаватт (МВт) , была введена в эксплуатацию в 1990 году. В настоящее время существует семь действующих станций SEGS с общей мощностью. 357 МВт - это делает ее одной из крупнейших солнечных ТЭЦ в мире.

2.1.2. Как это работает?

Эти солнечные тепловые электростанции работают за счет фокусировки солнечного света от длинных параболических зеркал на приемные трубки, которые проходят по длине зеркала в их фокусной точке. Эта концентрированная солнечная энергия нагревает жидкость, которая непрерывно течет по трубкам.

Эта нагретая жидкость затем направляется в теплообменник для кипячения воды в обычном паротурбинном генераторе для выработки электроэнергии.

2.2. Линейные концентрирующие системы

Линейные концентрирующие системы, иногда называемые отражателями Френеля, также состоят из больших «полей» зеркал, отслеживающих солнце, которые имеют тенденцию быть выровненными в направлении север-юг для максимального захвата солнечного света.Эта установка позволяет рядам зеркал отслеживать солнце с востока на запад в течение дня.

2.2.1. Как это работает?

Подобно своим собратьям с параболическими зеркалами, линейные концентрирующие системы собирают солнечную энергию с помощью длинных прямоугольных U-образных зеркал. Однако, в отличие от параболических систем, в линейных системах отражателей Френеля приемная труба размещается над несколькими зеркалами, чтобы обеспечить большую мобильность зеркал при отслеживании солнца.

В этих типах систем используется эффект линзы Френеля, который позволяет использовать большое концентрирующее зеркало с большой апертурой и коротким фокусным расстоянием.Такая установка позволяет подобным системам фокусировать солнечный свет примерно в 30 раз нормальной интенсивности.

2.3. Солнечные тарелки и двигатели

В солнечных тарелках также используются зеркала для фокусировки солнечной энергии на коллекторе. Они, как правило, состоят из очень больших спутниковых антенн, которые покрыты мозаикой из маленьких зеркал, которые фокусируют энергию на приемнике в фокусной точке.

2.3.1. Как это работает?

Подобно параболической и линейной системам, тарельчатая, зеркальная поверхность направляет и концентрирует солнечный свет на тепловом приемнике в фокусе антенны.Этот ресивер передает выделяемое тепло двигателю-генератору.

Наиболее распространенным типом теплового двигателя, используемого в системах тарелка / двигатель, является двигатель Стирлинга. Нагретая жидкость из приемника посуды используется для перемещения поршней в двигателе для создания механической энергии.

Эта механическая энергия затем поступает в генератор или генератор переменного тока для выработки электроэнергии.

Солнечные антенны / двигатели всегда направлены прямо на солнце и концентрируют солнечную энергию в фокусе антенны.Коэффициент концентрации солнечной тарелки намного выше, чем у линейных концентрирующих систем, и она имеет температуру рабочей жидкости выше 749 градусов Цельсия .

Электростанция с линейным отражателем Френеля. Источник: energy.gov

Электрогенерирующее оборудование может быть установлено либо непосредственно в центральной точке антенны (отлично подходит для удаленных мест), либо собрано из множества тарелок и выработки электроэнергии, происходящей в центральной точке.

У.S. Army разрабатывает систему мощностью 1,5 МВт на складе армии Туэле в штате Юта с 429 солнечными батареями двигателя Стирлинга.

3. Башни солнечной энергии

Башни солнечной энергии представляют собой интересный метод, в котором от сотен до тысяч плоских зеркал, отслеживающих солнце (гелиостатов), отражают и концентрируют солнечную энергию на центральной башне. Этот метод позволяет концентрировать солнечный свет в 1500 раз , чем это обычно возможно только от прямых солнечных лучей.

Интересный пример такого типа электростанции можно найти в Юлихе, Северный Рейн-Вестфалия, Германия.Комплекс расположен на площади 18000 квадратных километров , на которой размещено более 2000 гелиостатов , которые фокусируют солнечный свет на центральной башне высотой 60 метров и высотой .

Министерство энергетики США и другие электроэнергетические компании построили и эксплуатировали первую демонстрационную солнечную электростанцию ​​недалеко от Барстоу, Калифорния, в 1980-х и 1990-х годах.

Некоторые в настоящее время также находятся в разработке в Чили.

Башня солнечной энергии Иванпа. Источник: Aioannides / Wikimedia Commons

Сегодня в США.С., в эксплуатации находятся три солнечные электростанции. Это объект солнечной энергии 392 МВт, Ivanpah в Айвенпа-Драй-Лейк, Калифорния, проект солнечной энергии 110 MW Crescent Dunes в Неваде и 5 MW Sierra Sun Tower в пустыне Мохаве, Калифорния.

3.1. Как это работает?

Концентрированная солнечная энергия используется для нагрева воздуха в градирне до 700 градусов Цельсия . Тепло улавливается котлом и используется для производства электроэнергии с помощью паровой турбины.

Некоторые башни также используют воду в качестве теплоносителя. В настоящее время исследуются и испытываются более совершенные системы, в которых будут использоваться соли нитратов из-за их более высоких свойств теплопередачи и хранения по сравнению с водой и воздухом.

Возможность аккумулирования тепловой энергии позволяет системе производить электроэнергию в пасмурную погоду или ночью.

Эти солнечные электростанции идеально подходят для работы в районах с неблагоприятными погодными условиями.Они используются в пустыне Мохаве в Калифорнии и выдерживают град и песчаные бури.

4. Солнечный пруд

Солнечные пруды Солнечные электростанции используют бассейн с соленой водой, который собирает и накапливает солнечную тепловую энергию. Он использует технику, называемую технологией градиента солености.

Этот метод действует как тепловая ловушка в пруду, которую можно использовать напрямую или хранить для дальнейшего использования. Такая электростанция используется в Израиле на электростанции Бейт-ха-Арава с 1984 года.

Есть и другие примеры в Бхудже в Индии, которые были завершены в 1993 году.

Источник: Quora

4.1. Как это работает?

Солнечные пруды используют большой объем соленой воды для сбора и хранения солнечной тепловой энергии. Соленая вода естественным образом образует вертикальный градиент солености, известный как галоклин, с водой низкой солености вверху и водой высокой солености внизу.

Уровни концентрации соли увеличиваются с глубиной, и, следовательно, плотность также увеличивается от поверхности к дну озера, пока раствор не станет однородным на заданной глубине.

Принцип довольно прост. Солнечные лучи проникают в пруд и в конечном итоге достигают дна бассейна.

В обычном пруду или водоеме вода на дне водоема нагревается, становится менее плотной и поднимается вверх, создавая конвекционное течение. Солнечные водоемы предназначены для того, чтобы препятствовать этому процессу, добавляя соль в воду, пока нижние уровни не станут полностью насыщенными.

Поскольку вода с высокой соленостью не смешивается легко с водой с низкой соленостью над ней, конвекционные потоки содержатся в каждом отдельном слое, и между ними происходит минимальное перемешивание.

Этот процесс концентрирует тепловую энергию и снижает потери тепла из воды. В среднем вода с высокой соленостью может достигать 90 градусов Цельсия , а слои с низкой соленостью поддерживают около 30 градусов Цельсия .

Эту горячую соленую воду можно откачать для использования в производстве электроэнергии, через турбину или в качестве источника тепловой энергии.

.

Смотрите также


Интересующую Вас информацию Вы можете уточнить у наших специалистов, заполнив форму, приведенную ниже. Мы с радостью Вас проконсультируем!
Почта:
Ваше Имя:
Сообщение:
30+5