Какие диски подходят на ниву шевроле


В статье мы расскажем какие диски и резину возможно поставить на Niva Chevrolet

Нива Шевроле – внедорожник, предназначенный для поездок в условиях легкого бездорожья и пересеченной местности. В данной модели отлично сочетаются ремонтопригодность отечественной модели, качество и элегантность Шевроле.Нива Шевроле – внедорожник, предназначенный для поездок в условиях легкого бездорожья и пересеченной местности. В данной модели отлично сочетаются ремонтопригодность отечественной модели, качество и элегантность Шевроле.

Обновленные модели и люксовые версии Niva обычно комплектуются литыми дисками из алюминия, которые легко расколоть при ударе о выбоины на асфальте или о камни на бездорожье. В простых комплектациях автомобиль выпускается со стальными штампованными дисками и резиной:

R15 6Jx15 ET40 5х139,7 DIA 98,5; 205/75 R15

R16 7Jx16 ET40 5х139,7 DIA 98,5; 215/65 R16

Заводские стальные диски на Нива Шевроле подвержены деформации из-за низкого качества металла; представляют из себя практически закрытую конструкцию, которая имеет отверстия небольшого размера по кругу диска, благодаря этому воздух не проникает в тормозную систему.

Диски ORW напротив имеют большие по диаметру отверстия, что помогает очищению диска от грязи и увеличивает приток воздуха к тормозному диску.

Тюнинг Шевроле Нива начинают с замены резины на околостоковую:

215/75 R15; 225/70 R15; 215/70 R16

Для этих размеров шин ORW предлагает купить для Нива Шевроле стальные диски близкие к оригинальным, но гораздо прочнее:

16х7 ЕТ +25

16х7 ЕТ +15

16х7 ЕТ +30

15х7 ЕТ +25

Размер колес важнейший показатель, от которого напрямую зависит проходимость внедорожника. Следующий этап тюнинга автомобиля - установка резины 30 дюймов:

30х9,5R15; 235/75R15; 225/70R16; 245/70R16

Из доработок необходимо провести минимальный тюнинг подвески, поиграть с вылетом диска:

15х7 ЕТ 0

16х7 ЕТ 0

16х8 ЕТ +15

15х8 ЕТ 0

16х8 ЕТ 0

18х8 ЕТ +15

Если Вы идете дальше в модернизации своего внедорожника, и планируете поставить колеса 31 дюйм и более (31\10.5\R15 или R16). Готовьтесь к глобальным изменениям: прорезать арки, изменить детали ходовой, перенести мост и купить диски с вылетом от ET 0 до ET -40.

15x8 ET -19

15x8 ET -40

16x8 ET -19

16x8 ET -40

Niva Chevrolet дает возможность реализовать практически безграничные фантазии по превращению легкого городского кроссовера в монстра способного покорять любое бездорожье. Нивоводы используют различные аксессуары и запчасти, ставят на автомобиль шины до 35 дюймов, в том числе и на дисках с бедлоками.

Просчитывайте и продумывайте постройку своего автомобиля, а компания «ORW» удовлетворит любые желания водителя-конструктора, так как в ассортименте представлены диски с различным вылетом, диаметром и шириной, которые подойдут именно Вашей Niva.

Диски для Niva Chevrolet в нашем каталоге.

История и эволюция колеса

Колесо - одно из самых фундаментальных изобретений, которые мы используем в повседневной жизни. Изобретенное где-то между 4500 - 3300 гг. До н.э. в эпоху энеолита, колесо породило все, от транспорта до современной техники и почти все, что между ними.

Идея колеса, возможно, возникла под влиянием природы, как и многие изобретения. Ближайшим свидетельством существования колеса в природе является дом навозного жука. Навозные жуки откладывают яйца в навоз и переносят его, скатывая в клубок.Еще одно колесо, встречающееся в природе, - перекати-поле.

Колесо само по себе хоть и многообещающе, но не очень полезно. Как и в случае с пончиком, его наиболее важной особенностью является отверстие в центре. Если бы оно не подходило для крепления устойчивой платформы с помощью оси, колесо было бы не чем иным, как катящимся по краю цилиндром. Версии, возможно, использовались в Древнем Египте для перемещения больших объектов, однако они не допускали длительного использования или способа транспортировки.

Идея добавления оси не проста.Чтобы система работала, колесо должно свободно вращаться вокруг оси. Это достигается за счет установки оси непосредственно в центре колеса для максимальной непрерывности движения. Кроме того, ось и выравнивание отверстия должны быть перпендикулярными, чтобы уменьшить трение. Кроме того, ось должна оставаться как можно более тонкой, чтобы уменьшить площадь ее поверхности, но при этом она должна выдерживать нагрузку.

СМОТРИ ТАКЖЕ: 9 НАИБОЛЕЕ ИНТЕРЕСНЫХ НЕУДАЧНЫХ ИЗОБРЕТЕНИЙ ИЗ ПРОШЛОГО

Отсюда единственное трение, которое необходимо преодолеть, - это трение между внутренним колесом и осью.Чем ровнее внутренняя поверхность колеса и внешняя поверхность оси, тем меньшее трение приходится преодолевать системе.

Для того, чтобы эта структура работала, должны быть соблюдены не только все эти параметры, но и все одновременно. Возможно, именно по этой причине такая простая концепция так долго набирала обороты.

Источник: Pixabay

Краткая история

Где возникло колесо, остается загадкой, но его использование быстро распространилось по всей Евразии и на Ближнем Востоке.Самые ранние изображения колесных повозок появились в Польше, что позволяет предположить, что этот регион, возможно, был одним из первых.

Аско Парпола, индолог из Хельсинкского университета в Финляндии, предполагает, что колесо возникло у трипольцев на территории современной Украины. Это основано на том факте, что слово «колесо» происходит от их языка.

Есть основания предполагать, что колесо впервые использовалось для гончарных кругов в Месопотамии, за 300 лет до того, как оно было приспособлено для колесницы.

Считается, что тачка впервые появилась в Древней Греции между 600 - 400 годами до нашей эры. Некоторое время спустя последовал Китай, и в конце концов он попал в средневековую Европу. Хотя в то время тачка была очень дорогим товаром, она окупилась за несколько дней, поскольку значительно снизила рабочую нагрузку рабочих.

Археологи в Вера-Крус, Мексика, обнаружили керамические игрушки в виде маленьких животных. У животных вместо ног были колеса, чтобы дети могли их толкать.Однако в регионе никогда не использовалось колесо для перевозки до прибытия европейских поселенцев.

На Ближнем Востоке и в Северной Африке, где есть обширные пустыни, верблюд оставался предпочтительным средством передвижения вплоть до 600 года нашей эры. они тонут в песке. Ричард Буллиет приводит несколько возможных причин в своей книге « Верблюд и колесо » 1975 года.Ближневосточные общества продолжали использовать колеса для таких практик, как ирригация, фрезерование и гончарное дело.

Неудивительно, что после всего этого базовая конструкция чего-то столь же прочного, как колесо, не изменилась более 6000 лет.

Колесо не всегда использовалось для передвижения, на самом деле, прикрепить колесо к телеге появилось только 300 лет спустя. Первоначальные колеса были сделаны из камня для фрезерования. Некоторые круги использовались даже в гончарном токарном станке.

Вот еще несколько фактов о колесе.

Источник: Pixabay

Колесо фортуны

Колесо фортуны - это не просто американское игровое телешоу. Фактически, это понятие средневековой философии символизирует судьбу. Колесо принадлежит богине Фортуне, которая вращает колесо, чтобы решать судьбы и несчастья смертных. Фортуну часто изображают в виде женщины с завязанными глазами, вращающей гигантское колесо.

Источник: Pixabay

Пытки

В средневековье колесо также использовалось для различных видов пыток.Некоторые кровавые наказания включали привязку нарушителя закона к ободу с шипами большого колеса, а затем катание им по земле. Другие включали катание меньших колес по костям врага. В любом случае, я считаю, что колесо эволюционировало к лучшему.

Источник: Wikimedia Commons

Perpetual Motion Machines

Концепция вечных двигателей существовала веками. Это святой Грааль науки, и если бы он был достигнут, он произвел бы бесплатную энергию, как только он будет приведен в движение.

Самая распространенная конструкция устройства вечного движения включает в себя какое-то колесо, часто с отягощением, так что оно постоянно вращается, используя гравитацию в качестве движущей силы. Однако эти устройства противоречат первым двум законам термодинамики. В нем говорится, что энергия не может быть создана или уничтожена в изолированной системе и что энтропия в системе всегда увеличивается.

Оптическая иллюзия

В телевидении существует такое понятие, как наложение спектров.Это когда в фильме вращающееся колесо кажется вращающимся назад. Пленочные камеры работают, захватывая серию неподвижных изображений, а затем они воспроизводят эти изображения последовательно со скоростью примерно 50 кадров в секунду. Этого достаточно, чтобы заставить наш мозг думать, что изображение движется. Однако, если колесо движется быстрее, чем частота кадров, частота вращения превышает частоту захвата изображения.

Например: если спица колеса находится в положении на 12 часов в первой рамке, а затем во второй рамке, эта спица перемещается почти на полный оборот в положение на 11 часов.Ваш мозг интерпретирует это как движение против часовой стрелки, поскольку не может определить, что происходит между кадрами. На правильной частоте такой же эффект может дать стробоскоп или даже люминесцентная лампа.

Источник: Pixabay

Fifth Wheeling

Вы когда-нибудь задумывались, откуда появился термин «пятое колесо»? Пятое колесо выступало из передней оси каретки, чтобы предотвратить ее опрокидывание. Как у дрэг-рейсинга сзади. Большую часть времени он никогда не использовался и становился ненужным, поэтому, называя кого-то или что-то «пятое колесо», вы называете их ненужными.

Автор Терри Берман

.

Mood of Transport (английский язык для логистики)


Начнем с сопоставления изображений транспортного и погрузочно-разгрузочного оборудования (a-f) словами (1-6).

1. Сменный кузов

2. Контейнер корабль

3. Грэпплер лифт

4. Рейлер прицеп

5. Река баржа

6. LGV (большегрузный автомобиль)

Вопрос 1:

1. Мультимодальные перевозки

2. Контроллер

3.Интермодальные перевозки

4. Без сопровождения

5. Заблокировать поезд

6. Одноместный вагон

а. В водитель не остается со своим дорожным транспортным средством во время перевозки по железной дороге или парому.

б. Товар перевозятся в одной грузовой единице или транспортном средстве с использованием разных режимов транспорт. Сама обработка груза не требуется при смене режимы.

c. А один грузоотправитель использует целый поезд, который отправляется прямо от места погрузки к месту назначения.Никакой сборки и разборки не требуется.

d. Перевозка грузов как минимум двумя разными видами транспорта, например доставка мотором грузовик и самолет.

е. Поезд формируется из отдельных вагонов или комплектов вагонов, имеющих разные происхождения и разных направлений.

f. Комбинирует автомобильный и железнодорожный транспорт: весь автомобильный грузовые автомобили, прицепы или съемные кузова перевозятся по железной дороге.

Вопрос 2:


Два сотрудника транспортно-экспедиционной компании сравнивают виды транспорта для перевозки из западного Китая в Шанхай.Слушать и исправьте информацию в таблице.

Внутренние водные пути

Дорога

Железная дорога (Экспресс-служба)

Скорость в днях

7

4

2

Стоимость

Низкий

По сравнению с баржей: на 60% выше

По сравнению с дорогой на 40% выше

Гибкость

Высокая

Очень высокий

Низкий

Вопрос 3:

Завершите предложения правильной формой слов в кронштейны.Затем послушайте еще раз, чтобы проверить.

1. Как долго это займет на барже? - Обычно около шести дней, но часто это занимает _____ (долго) в плохую погоду.

2. Это дешево - это фактически ___ (дешевый) из всех вариантов транспорта.

3. Это Доставка грузовиком займет всего четыре дня, но стоимость составит около 50%. ______ (выше), чем на барже.

4. Железная дорога определенно будет ______ (быстрее), чем вариант с грузовиком, если мы будем использовать dthe express обслуживание, которое занимает три дня.

5. Но это также будет ______ (дорого), чем стоимость доставки автомобильным транспортом. примерно на 40% выше.

6. И тогда, возможно, нам придется использовать стандартный поезд, что очень ________________ (медленный).

Ответьте на эти вопросы:

1. Почему вариант с баржей не очень гибкий?

2. Что они решают заняться в конце обсуждения?

Проведение сравнений:

При сравнении двух и более вещей мы используем сравнительные прилагательные.Сравнительная форма –er для кратких прилагательных. с односложными и двухсложными прилагательными, оканчивающимися на –y.

Транспорт по морю дешевле, чем по воздуху.

Сталь тяжелее бумаги .

Мы используем more + прилагательное с более длинные слова.

Доставка товары автомобильным транспортом дороже, чем их доставка по железной дороге.

Некоторые виды транспорта больше надежнее других.

Некоторые прилагательные имеют неправильную формулировку формы.

Хорошо / хорошо - лучше наши оценки лучше, чем их.

Плохо / плохо – хуже, их обслуживание хуже, чем наш.

Дальше / дальше- дальше этот груз пойдет дальше чем последний.

Вопрос 4:

Работа в паре. Сравнить различные виды транспорта с использованием некоторых прилагательных в графе .

Пример: я думаю, что доставка товара железнодорожный транспорт быстрее морского.

Прилагательные

Режимы транспортировки

Медленно / быстро

Рельс

Дорого / дешево

Воздух

Сейф

Прочитать

Подходит

Море

Надежный

Река

Экологически чистый

Трубопровод

Вопрос 5: Сопоставьте изображения (a-d) с именами (1-4):

1.Портал кран

2. ISO контейнер

3. Охват штабелеукладчик

4. Транстейнер

Вопрос 6:

Теперь завершите описание интермодальных перевозок и погрузочно-разгрузочное оборудование с глаголами из коробки.

Установленный, портальный, навесной, погрузочный, прикрепленный, вылет, ручка, сваи, сделано, ход

1.

Часть оборудования, используемого для _______ и разгрузки контейнеры с судов на грузовики или железнодорожные вагоны и наоборот.это рельсовый и может _______ не менее четырех железнодорожных путей. Он моторизован и может _______ параллельно борту судна.

2.

Особый тип устройства, который может _____ очень тяжелый нагрузки. Используется для перегрузки съемных кузовов и контейнеров из вагонов. к грузовикам и наоборот. Имеет четыре ножки _________ с колесами и разбрасывателем. балка, которая может охватывать большую площадь. Это может быть ______ на рельсах или на резиновых шинах и может разместить несколько рядов контейнеров.

3.

Разновидность вилочного погрузчика, используемого для обработки контейнеров. это оборудован траверсой и подъемного рычага и может быть использовано для подъема контейнеры и ________ их друг на друга за первым рядом контейнеры для подъема контейнера.

4.

Жесткий ящик ____ из стали, очень распространенный в интермодальных перевозках. транспорт. Его можно использовать для перевозки морским, железнодорожным, воздушным и автомобильным транспортом. это доступны во многих различных версиях и размерах. Например, есть открытый верх и версии с плоской стойкой.Некоторые из них имеют колеса или тележку _______. Наиболее распространенная длина - 20, 40 и 45 футов. Это сделано для спецификации международной организации по стандартизации.

Вопрос 7:

Заменить подчеркнутые слова глаголами из коробки, которые имеют то же значение. Используйте правильные глаголы froms.

Укладывать, приходить, бегать, исправлять, прикреплять, поднимать, соответствовать

1. Это Тип крана используется для подъема контейнеров .

2. Контейнеры доступны в различных вариантах варианты и размеры.

3. Это сверхпрочный вилочный погрузчик оборудован траверсой.

4. С С помощью этого устройства можно штабелировать контейнер друг на друга.

5. Некоторые контейнеры имеют тележку закрепленную на их.

6. Это устройство установлено на рельсах .

7. Программа кран моторизован и может перемещать вдоль набережной.

Вопрос 8:

Сотрудник транспортной компании представляет варианты контейнера потенциальному заказчику. Слушайте и дополняйте таблицу недостающая информация.

Тип контейнера

Подходит для перевозки

1

2

3 танкера

4

5 стеллажей

Вопрос 9:

Послушайте еще раз и закончите предложения.

Уровень, тент, рама, техника, крепление, снято, управляемая, вилки

1. Это поставляется с деревянным полом и имеет различные ______ устройства для фиксации груза.

2. Эти точки крепления расположены горизонтально на этаже _____.

3. Это имеет температуру ________ и особенно подходит для грузов, требующих регулируемые или низкие температуры.

4. Это стандартный контейнер ______ с установленной внутри цистерной.

5. Как Дополнительно предлагаем также танк-контейнеры с электроприводом ______ в случае, если груз требует охлаждения или обогрева во время транспортировки.

6. Это поставляется с покрытием из ПВХ _____ вместо панели крыши, чтобы обеспечить загрузку с верхняя.

7. Программа двери могут быть _____, чтобы облегчить погрузку.

8. Мы рекомендую этот специальный тип контейнера для перевозки тяжелых ______ и трубы.

Теперь отметьте разные типы контейнеров 1-5:

.

Характеристики контейнера:

Мы рекомендуем этот тип контейнера для ……

Особенно подходит для ……

Он поставляется с ……..

В качестве дополнения мы также предлагаем…

Оно имеет …. Для загрузки.

Вопрос 10:

Опишите особенности контейнера партнеру используя слова на этой странице.

Вопрос 11:

Отсортируйте товары по правильным заголовкам.

Скоропортящийся груз

Груз нескоропортящийся

Тяжеловесные и крупногабаритные грузы

Мясо, стальные трубы, сырая нефть, свежие продукты, промышленные котлы, морепродукты, алкоголь, молочные продукты, тракторы, охлажденные или замороженные продукты питания, вредные химические вещества.

Можете ли вы подумать о других типах товаров? Обсуди в небольшом группа.


.

Smart Farming - автоматизированное и подключенное сельское хозяйство> ENGINEERING.com

Сейчас на Земле живет больше людей, чем когда-либо прежде - 7,3 миллиарда - и это число продолжает расти, по прогнозам ООН, что к 2050 году оно достигнет 9,7 миллиарда. их. Продовольственная и сельскохозяйственная организация ООН прогнозирует, что нам необходимо увеличить мировое производство продуктов питания на 70 процентов в течение следующих нескольких десятилетий, чтобы прокормить ожидаемое население к 2050 году.

Наращивать производство до такой степени непросто, но современные инженеры и фермеры работают вместе, чтобы создать технологическое решение: точное земледелие и «умная ферма».

Сельское хозяйство - старейшая человеческая отрасль, но технологические изменения здесь, безусловно, не новы. Промышленные революции 19 и 20 веков заменили ручные инструменты и конные плуги бензиновыми двигателями и химическими удобрениями.

Теперь мы находимся на пороге очередного фундаментального сдвига в сельском хозяйстве благодаря новой промышленной революции и технологиям Индустрии 4.0.

Интеллектуальное земледелие и точное земледелие предполагают интеграцию передовых технологий в существующие методы ведения сельского хозяйства с целью повышения эффективности производства и качества сельскохозяйственной продукции. В качестве дополнительного преимущества они также улучшают качество жизни сельскохозяйственных рабочих за счет сокращения тяжелого труда и утомительных задач.

«Как будет выглядеть ферма через 50–100 лет?» - вопрос, заданный Дэвидом Слотером, профессором биологической и экологической инженерии Калифорнийского университета в Дэвисе. «Мы должны заняться проблемами роста населения, изменения климата и труда, и это вызвало большой интерес к технологиям».

Практически каждый аспект сельского хозяйства может извлечь выгоду из технологических достижений - от посадки и полива до здоровья сельскохозяйственных культур и сбора урожая. Большинство нынешних и будущих сельскохозяйственных технологий делятся на три категории, которые, как ожидается, станут столпами интеллектуальной фермы: автономные роботы, дроны или БПЛА, а также датчики и Интернет вещей (IoT).

Как эти технологии уже меняют сельское хозяйство и какие новые изменения они принесут в будущем?

Замена человеческого труда автоматизацией - растущая тенденция во многих отраслях, и сельское хозяйство не исключение. Большинство аспектов сельского хозяйства исключительно трудоемки, и большая часть этого труда состоит из повторяющихся и стандартизированных задач - идеальная ниша для робототехники и автоматизации.

Мы уже видим сельскохозяйственных роботов, или AgBots, которые начинают появляться на фермах и выполнять самые разные задачи - от посадки и полива до сбора урожая и сортировки.В конце концов, эта новая волна интеллектуального оборудования позволит производить больше продуктов питания более высокого качества с меньшими затратами труда.

Беспилотные тракторы

Трактор - это сердце фермы, которое используется для множества различных задач в зависимости от типа фермы и конфигурации ее вспомогательного оборудования. Ожидается, что по мере развития технологий автономного вождения тракторы станут одними из первых машин, подлежащих переоборудованию.

На ранних этапах все еще потребуются человеческие усилия для создания карт полей и границ, программирования оптимальных траекторий полей с помощью программного обеспечения для планирования траекторий и определения других рабочих условий.Люди по-прежнему будут необходимы для регулярного ремонта и обслуживания.

Тем не менее, автономные тракторы со временем станут более функциональными и самодостаточными, особенно с включением дополнительных камер и систем машинного зрения, GPS для навигации, подключения к Интернету вещей для удаленного мониторинга и управления, а также радара и LiDAR для обнаружения и предотвращения объектов. Все эти технологические достижения значительно уменьшат потребность людей в активном управлении этими машинами.

Согласно CNH Industrial, компании, которая специализируется на сельскохозяйственном оборудовании и представила концептуальный автономный трактор в 2016 году: «В будущем эти концептуальные тракторы смогут использовать« большие данные », такие как спутниковая информация о погоде в реальном времени, для автоматического наилучшее использование идеальных условий, независимо от человеческого фактора и времени суток ».

(Изображение предоставлено CNH Industrial.)

Посев и посадка

(Изображение любезно предоставлено CEMA.)

Когда-то посев семян был трудоемким ручным процессом. Современное сельское хозяйство улучшило это с помощью сеялок, которые могут обрабатывать большую площадь намного быстрее, чем человек. Однако они часто используют метод разброса, который может быть неточным и расточительным, когда семена падают за пределы оптимального места. Эффективный посев требует контроля над двумя переменными: посадка семян на правильной глубине и размещение растений на соответствующем расстоянии друг от друга, чтобы обеспечить оптимальный рост.

Оборудование для точного высева спроектировано так, чтобы каждый раз максимально использовать эти параметры.Комбинирование данных геокартирования и данных датчиков, детализирующих качество почвы, плотность, влажность и уровни питательных веществ, избавляет от множества догадок в процессе посева. Семена имеют наилучшие шансы прорасти и вырасти, а урожай в целом будет выше.

По мере того, как сельское хозяйство переходит в будущее, существующие сеялки точного высева будут поставляться вместе с автономными тракторами и системами с поддержкой Интернета вещей, которые передают информацию фермеру. Таким образом можно засеять все поле, и только один человек будет следить за процессом через видеопоток или цифровую панель управления на компьютере или планшете, в то время как по полю катятся несколько машин.

Автоматический полив и орошение

Подземное капельное орошение (SDI) уже является распространенным методом орошения, который позволяет фермерам контролировать, когда и сколько воды получают их культуры. Объединив эти системы SDI со все более сложными датчиками с поддержкой IoT для постоянного мониторинга уровня влажности и здоровья растений, фермеры смогут вмешиваться только при необходимости, в противном случае позволяя системе работать автономно.

Пример системы SDI для сельского хозяйства.В то время как существующие системы часто требуют, чтобы фермер вручную проверял линии и контролировал насосы, фильтры и датчики, будущие фермы могут подключать все это оборудование к датчикам, которые передают данные мониторинга непосредственно на компьютер или смартфон. (Изображение любезно предоставлено Jain Irrigation.)

Хотя системы SDI нельзя назвать полностью роботизированными, они могут работать полностью автономно в контексте интеллектуальной фермы, полагаясь на данные датчиков, установленных вокруг полей, для выполнения полива по мере необходимости.

Прополка и уход за посевами

Прополка и борьба с вредителями являются важными аспектами обслуживания растений и задачами, идеально подходящими для автономных роботов.Несколько прототипов уже разрабатываются, в том числе Bonirob от Deepfield Robotics и автоматизированный культиватор, который является частью исследовательской инициативы UC Davis Smart Farm.

Робот Bonirob размером с машину может автономно перемещаться по посевным площадям с помощью видео, LiDAR и спутникового GPS. Его разработчики используют машинное обучение, чтобы научить бонироба определять сорняки перед их удалением. Благодаря усовершенствованному машинному обучению или даже искусственному интеллекту (ИИ), которые будут интегрированы в будущее, такие машины могут полностью заменить людям необходимость вручную пропалывать или контролировать посевы.

Сельскохозяйственный робот Bonirob. (Изображение любезно предоставлено Deepfield Robotics.)

Прототип Калифорнийского университета в Дэвисе работает несколько иначе. Их культиватор буксируется за трактором и оснащен системами визуализации, которые могут идентифицировать флуоресцентный краситель, которым покрываются семена при посеве, и который переносится на молодые растения, когда они прорастают и начинают расти. Затем культиватор вырезает не светящиеся сорняки.

Хотя эти примеры представляют собой роботов, предназначенных для прополки, та же базовая машина может быть оборудована датчиками, камерами и распылителями для выявления вредителей и применения инсектицидов.

Эти и им подобные роботы не будут работать изолированно на фермах будущего. Они будут подключены к автономным тракторам и IoT, что позволит практически полностью запустить всю операцию.

Сбор урожая с поля, деревьев и лозы

Сбор урожая зависит от знания того, когда урожай готов, работы с погодными условиями и завершения сбора урожая в ограниченное доступное время. В настоящее время для уборки урожая используется большое количество разнообразных машин, многие из которых в будущем могут быть автоматизированы.

Традиционные зерноуборочные комбайны, кормоуборочные комбайны и специальные комбайны могут сразу же получить преимущества от технологии автономного трактора для прохождения поля. Добавьте более совершенные технологии с датчиками и подключением к Интернету вещей, и машины смогут автоматически начинать сбор урожая, как только условия станут идеальными, освобождая фермера для других задач.

Развитие технологий, позволяющих выполнять деликатные работы по уборке урожая, такие как сбор фруктов с деревьев или овощей, таких как помидоры, - вот где действительно проявят себя высокотехнологичные фермы.Инженеры работают над созданием подходящих роботизированных компонентов для этих сложных задач, таких как робот Panasonic для сбора помидоров, который включает в себя сложные камеры и алгоритмы для определения цвета, формы и местоположения помидора, чтобы определить его спелость.

Этот робот собирает помидоры за стебель, чтобы избежать ушибов, но другие инженеры пытаются разработать роботизированные концевые эффекторы, которые будут способны аккуратно захватывать фрукты и овощи, достаточно крепко для сбора урожая, но не настолько сильно, чтобы они могли повредить их.

Еще одним прототипом для сбора фруктов является робот для сбора яблок с вакуумным приводом от Abundant Robotics, который использует компьютерное зрение, чтобы определять местонахождение яблок на дереве и определять, готовы ли они к сбору урожая.

Это лишь некоторые из десятков перспективных роботов, которые скоро возьмут на себя работу по уборке урожая. Опять же, используя основу надежной системы IoT, эти агроботы могут постоянно патрулировать поля, проверять растения с помощью датчиков и при необходимости собирать спелые культуры.

Сокращение труда, повышение урожайности и эффективности

Основной концепцией внедрения автономной робототехники в сельское хозяйство остается цель сокращения использования ручного труда при одновременном повышении эффективности, выхода продукции и качества.

В отличие от своих предков, чье время в основном занимал тяжелый труд, фермеры будущего будут тратить свое время на выполнение таких задач, как ремонт техники, отладка кода роботов, анализ данных и планирование сельскохозяйственных операций.

Как отмечалось в отношении всех этих агроботов, наличие надежной системы датчиков и Интернета вещей, встроенных в инфраструктуру фермы, имеет важное значение. Ключ к действительно «умной» ферме зависит от способности всех машин и датчиков связываться друг с другом и с фермером, даже если они работают автономно.

Какой фермер не хотел бы видеть свои поля с высоты птичьего полета? Если когда-то требовалось нанять пилота вертолета или небольшого самолета для облета собственности, делая аэрофотоснимки, теперь дроны, оснащенные камерами, могут производить те же изображения за небольшую часть стоимости.

Кроме того, достижения в области технологий обработки изображений означают, что вы больше не ограничены только видимым светом и фотографией. Доступны системы камер, охватывающие все: от стандартных фотографических изображений до инфракрасных, ультрафиолетовых и даже гиперспектральных изображений. Многие из этих камер также могут записывать видео. Разрешение изображения при всех этих методах визуализации также увеличилось, и значение «высокого» в «высоком разрешении» продолжает расти.

Все эти различные типы изображений позволяют фермерам собирать более подробные данные, чем когда-либо прежде, расширяя их возможности для мониторинга здоровья сельскохозяйственных культур, оценки качества почвы и планирования мест посадки для оптимизации ресурсов и землепользования.Возможность регулярно выполнять эти полевые исследования улучшает планирование схем посадки семян, орошения и картографирования местности как в 2D, так и в 3D. Имея все эти данные, фермеры могут оптимизировать каждый аспект управления своими землями и урожаем.

Но не только камеры и возможности визуализации оказывают влияние на сельское хозяйство с помощью дронов - дроны также находят применение при посадке и опрыскивании.

Посадка с воздуха

Дроны-прототипы строятся и тестируются для использования при посеве и посадке, чтобы заменить необходимость ручного труда.Например, несколько компаний и исследователей работают над дронами, которые могут использовать сжатый воздух для выстрела капсул, содержащих семенные коробочки с удобрениями и питательными веществами, прямо в землю.

DroneSeed и BioCarbon - две такие компании, каждая из которых разрабатывает дроны, которые могут нести модуль, запускающий семена деревьев в землю в оптимальных местах. Хотя в настоящее время они предназначены для проектов по лесовосстановлению, нетрудно представить, что модули можно будет перенастроить для соответствия различным семенам сельскохозяйственных культур.С IoT и программным обеспечением для автономной работы парк дронов может завершить чрезвычайно точный посев в идеальных условиях для роста каждой культуры, увеличивая количество изменений для более быстрого роста и более высокой урожайности.

Пример дрона для посадки деревьев. (Изображение любезно предоставлено BioCarbon.)

Опрыскивание растений

Дрон для опрыскивания сельскохозяйственных культур DJI Agras MG-1. (Изображение любезно предоставлено DJI.)

В настоящее время доступны и разрабатываются дроны для опрыскивания сельскохозяйственных культур, что дает возможность автоматизировать еще одну трудоемкую задачу.Используя комбинацию GPS, лазерного измерения и ультразвукового позиционирования, дроны для опрыскивания сельскохозяйственных культур могут легко адаптироваться к высоте и местоположению, подстраиваясь под такие переменные, как скорость ветра, топография и география. Это позволяет дронам выполнять задачи по опрыскиванию сельскохозяйственных культур более эффективно, с большей точностью и с меньшими отходами.

Например, DJI предлагает дрон под названием Agras MG-1, разработанный специально для опрыскивания сельскохозяйственных культур, с емкостью бака 2,6 галлона (10 литров) жидких пестицидов, гербицидов или удобрений и дальностью полета от семи до десяти акров в час. .Микроволновый радар позволяет этому дрону поддерживать правильное расстояние до сельскохозяйственных культур и обеспечивать равномерное покрытие. Согласно DJI, он может работать в автоматическом, полуавтоматическом или ручном режиме.

Работая совместно с другими агроботами, растения, определенные как нуждающиеся в особом внимании, могли получить персональный визит ближайшего дрона при первых признаках проблемы. Возможность уделять индивидуальное внимание любой части поля, как только это необходимо, может помочь остановить многие проблемы до того, как они распространятся.

Дрон Agras MG-1 опрыскивает поле. (Изображение любезно предоставлено DJI.)

Мониторинг и анализ в реальном времени

Одна из самых полезных задач, которые могут выполнять дроны, - это удаленный мониторинг и анализ полей и посевов. Представьте себе преимущества использования небольшого парка дронов вместо группы рабочих, часами проводящих на ногах или в транспортном средстве, путешествуя по полю и визуально проверяя состояние урожая.

Здесь важна подключенная ферма, так как все эти данные должны быть полезны.Фермеры могут просматривать данные и совершать личные поездки на поля только тогда, когда возникает конкретная проблема, требующая их внимания, вместо того, чтобы тратить время и силы на уход за здоровыми растениями.

Учитывая, что дроны для сельскохозяйственного использования все еще находятся на ранней стадии своего развития, у них есть несколько недостатков. Диапазоны и время полета не так высоки, как требовалось бы многим фермам - в настоящее время даже самые длительные дроны работают максимум около часа, прежде чем им нужно будет вернуться и подзарядить.

Капитальные затраты также все еще довольно высоки, до 25 000 долларов США на дрон для чего-то вроде PrecisionHawk Lancaster. Существуют менее дорогие модели, но они могут не поставляться с необходимым оборудованием для визуализации или распыления.

Инновационные автономные агроботы и дроны полезны, но что действительно сделает будущую ферму «умной фермой», так это то, что объединит все эти технологии: Интернет вещей.

Интернет вещей стал своего рода универсальным термином для идеи подключения компьютеров, машин, оборудования и устройств всех типов друг к другу, обмена данными и связи таким образом, чтобы они могли работать как так называемые «Умная» система.Мы уже видим, как технологии Интернета вещей используются по-разному, например в устройствах умного дома и цифровых помощниках, умных заводах и умных медицинских устройствах.

«Умные фермы» будут иметь датчики, встроенные на каждом этапе сельскохозяйственного процесса и на каждую единицу оборудования. Датчики, установленные на полях, будут собирать данные об уровне освещенности, состоянии почвы, орошении, качестве воздуха и погоде. Эти данные будут возвращены фермеру или непосредственно на поле AgBots. Команды роботов будут перемещаться по полям и работать автономно, чтобы реагировать на потребности сельскохозяйственных культур, а также выполнять функции прополки, полива, обрезки и уборки урожая, руководствуясь собственным набором датчиков, навигацией и данными о урожае.Дроны будут путешествовать по небу, наблюдая за здоровьем растений и состоянием почвы с высоты птичьего полета или создавая карты, которые будут направлять роботов и помогать фермерам планировать следующие шаги фермы. Все это поможет повысить урожайность, повысить доступность и качество продуктов питания.

BI Intelligence поделился своим прогнозом, что количество устройств IoT, установленных в сельском хозяйстве, увеличится с 30 миллионов в 2015 году до 75 миллионов к 2020 году. Ожидается, что в соответствии с этой тенденцией подключенные фермы будут генерировать целых 4.1 миллион точек данных каждый день в 2050 году - по сравнению с 190 000 в 2014 году.

Гора данных и другой информации, генерируемые сельскохозяйственными технологиями, а также возможности подключения, позволяющие обмениваться ими, станут основой будущей интеллектуальной фермы. Фермеры смогут «видеть» все аспекты своей деятельности - какие растения здоровы или требуют внимания, где поле нуждается в воде, что делают комбайны, - и принимать обоснованные решения.

И это обсуждение затронуло только верхушку пресловутого айсберга с упором на вегетативные культуры; В равной степени широко используются интеллектуальные технологии для животноводства, а также множество дронов и роботов для всех аспектов сельского хозяйства.Если каждая ферма в стране станет умной фермой, то достижение этого 70-процентного увеличения производства продуктов питания станет несомненным.

Какие агротехнологии вы ждете с нетерпением? Комментарий ниже.


.

Кто изобрел машину? | Живая наука

История автомобиля - длинная и извилистая дорога, и определить, кто именно изобрел автомобиль, непросто. Но если вы перемотаете назад эволюцию автомобилей, прошедшую мимо GPS, антиблокировочных тормозов и автоматических коробок передач и даже мимо Model T, в конечном итоге вы попадете в Benz Motor Car No. 1, недостающее звено между автомобилями и конными багги.

Карл Бенц запатентовал трехколесный автомобиль, известный как Motorwagen, в 1886 году.Это был первый настоящий современный автомобиль. Бенц также запатентовал свою собственную систему дроссельной заслонки, свечи зажигания, переключатели передач, водяной радиатор, карбюратор и другие основы автомобиля. В конце концов Бенц построил автомобильную компанию, которая существует до сих пор как Daimler Group.

Долгая история автомобиля

Бенц запатентовал первый автомобиль с бензиновым двигателем, но он не был первым провидцем самоходных транспортных средств. Некоторые основные моменты в истории автомобиля:

  • Леонардо да Винчи нарисовал механизированную телегу без лошади в начале 1500-х годов.Как и многие его конструкции, он не был построен при его жизни. Тем не менее, его копия выставлена ​​в замке Кло-Люсе, последнем доме Леонардо, а теперь его музее.
  • Парусные колесницы, приводимые в движение ветром, использовались в Китае, когда приезжали первые жители Запада, и в 1600 году Саймон Стивен из Голландии построил одну, которая перевозила 28 человек и преодолевала 39 миль (63 км) за два часа, согласно General Motors. .
  • Француз Николас-Жозеф Кюньо построил в 1769 году самоходную машину с паровой машиной.Тележка, предназначенная для перемещения артиллерийских орудий, двигалась пешком (2 мили в час или 3,2 км / ч) и должна была останавливаться каждые 20 минут, чтобы создать новый поток пара.

Двигатели внутреннего сгорания

Важнейшим элементом современного автомобиля является двигатель внутреннего сгорания. Этот тип двигателя использует взрывное сгорание топлива, чтобы толкать поршень внутри цилиндра. Движение поршня вращает коленчатый вал, который соединен с колесами карданного вала автомобиля. Как и сам автомобиль, двигатель внутреннего сгорания имеет долгую историю.Неполный список разработок включает:

  • 1680: Христиан Гюйгенс, более известный своим вкладом в качестве астронома, спроектировал, но так и не построил двигатель внутреннего сгорания, работающий на порохе.
  • 1826: англичанин Сэмюэл Браун переделал паровой двигатель, чтобы он сжигал бензин и поместил его на повозку, но этот прототип автомобиля также так и не получил широкого распространения.
  • 1858: Жан Жозеф-Этьен Ленуар запатентовал двигатель внутреннего сгорания двойного действия с электрическим искровым зажиганием, работающий на угольном газе.Он усовершенствовал этот двигатель, чтобы он работал на бензине, прикрепил его к трехколесной повозке и проехал 50 миль.
  • 1873: Американский инженер Джордж Брайтон разработал двухтактный керосиновый двигатель. Считается первым безопасным и практичным масляным двигателем.
  • 1876: Николаус Август Отто запатентовал первый четырехтактный двигатель в Германии.
  • 1885: Готлиб Даймлер из Германии изобрел прототип современного бензинового двигателя.
  • 1895: Рудольф Дизель, французский изобретатель, запатентовал дизельный двигатель, который был эффективным двигателем внутреннего сгорания с воспламенением от сжатия.

Электромобили

Электромобили были доступны в середине 19-го века, но потеряли популярность после того, как Генри Форд разработал свою модель T, по данным Министерства энергетики США. Однако в последние годы электромобили вернулись. Только в 2016 году в Соединенных Штатах было продано более 159 000 электромобилей, из них более половины - только в Калифорнии. Эта технология, как и двигатель внутреннего сгорания, также имеет долгую историю, которую трудно указать одному изобретателю.

Два изобретателя обычно приписывают независимое изобретение первого электромобиля: Роберт Андерсон, шотландский изобретатель, и Томас Дэвенпорт, американский изобретатель, в 1830-х годах, согласно AutomoStory. Первая аккумуляторная батарея была изобретена в 1865 году французским физиком Гастоном Плантом, который заменил неперезаряжаемые батареи, используемые в ранних моделях электромобилей. Вот некоторые из следующих нововведений:

  • Камиль Фор, французский химик, в 1881 году усовершенствовал конструкцию свинцово-кислотных аккумуляторов Plante, сделав электромобили жизнеспособным выбором для водителей.
  • Уильям Моррисон из Де-Мойна, штат Айова, был первым, кто успешно построил электромобиль в Соединенных Штатах в 1891 году.
  • Камилла Женаци, бельгийский автогонщик, построила и участвовала в гонках на электромобиле, установив новый рекорд наземной скорости 62 миль в час (100 км / ч) в 1899 году. Его автомобиль назывался La Jamais Contente (что означает «никогда не удовлетворенный»).
  • Фердинанд Порше, немецкий автомобильный инженер, изобрел первый гибридный автомобиль в 1900 году.
  • Томас Эдисон разработал в 1907 году никель-щелочную батарею, которая была более прочной и менее опасной, чем свинцово-кислотные батареи, используемые в автомобилях.Батарея не понравилась большинству потребителей, так как у нее была более высокая начальная стоимость, но она была внедрена в грузовые автомобили нескольких компаний из-за ее долговечности и большей дальности действия.

Электромобили продолжали набирать популярность, и в 1895 году состоялась первая автомобильная гонка в Соединенных Штатах - 52-мильный «рывок» из Чикаго в Уокиган, штат Иллинойс, и обратно, который занял у победителя 10 часов 23 минуты (в среднем скорость 5 миль / ч / 8 км / ч) - было шесть статей, две из которых были электромобилями, согласно журналу Smithsonian.По данным Министерства энергетики, к 1900 году у службы такси Нью-Йорка было около 60 электромобилей, и примерно треть автомобилей в США были электрическими.

Когда Генри Форд представил модель T в 1908 году, недорогой и высококачественный автомобиль с бензиновым двигателем стал очень популярным, и, по данным Министерства энергетики, начался упадок электромобилей. К 1920-м годам бензин стал дешевле и доступнее, и все больше американцев путешествовали на большие расстояния.Электромобили не обладали таким запасом хода, как автомобили с бензиновым двигателем, а электричество по-прежнему было недоступно во многих сельских городах, что делало автомобили с бензиновым двигателем предпочтительным вариантом.

В 1976 году Конгресс принял Закон об исследованиях, разработках и демонстрациях электрических и гибридных транспортных средств из-за роста цен на нефть, нехватки бензина и зависимости от иностранной нефти. Многие автомобильные компании начали исследовать и разрабатывать новые экономичные и электрические варианты, хотя до 1990-х годов ничего не произошло.

Toyota Prius, разработанная и выпущенная в Японии в 1997 году, была первым серийным гибридным автомобилем в мире и была доступна во всем мире к 2000 году. Гибридный автомобиль Honda Insight был выпущен в США в 1999 году.

Tesla Motors начал разработку и производство роскошного полностью электрического автомобиля, способного проехать более двухсот миль на одной зарядке в 2003 году, а первая модель была выпущена в 2008 году. Chevrolet Volt, выпущенный в 2010 году, был первым доступным подключаемым гибридом, который использовал бензиновый двигатель, чтобы увеличить запас хода автомобиля, когда батарея была разряжена.Nissan LEAF был также выпущен в 2010 году и был более доступен для публики, чем Tesla Model S.

Сегодня почти все крупные и многие небольшие автомобильные компании разрабатывают свои собственные электрические и гибридные модели.

Инновационный и предпринимательский

Карл Бенц, изобретатель первого практичного современного автомобиля. (Изображение предоставлено Daimler.com)

Карл Бенц получил признание за изобретение автомобиля, потому что его машина была практичной, использовала бензиновый двигатель внутреннего сгорания и работала так же, как современные автомобили.

Бенц родился в 1844 году в Карлсруэ, городе на юго-западе Германии. Его отец был железнодорожником, погибшим в аварии, когда Бенцу было 2 года. Несмотря на бедность, мать Бенца поддерживала его и его образование. Он был принят в Университет Карлсруэ в 15 лет и окончил его в 1864 году со степенью инженера-механика.

Первое предприятие Benz по производству чугуна и листового металла провалилось. Однако его новая невеста, Берта Рингер, использовала свое приданое, чтобы профинансировать новый завод по производству газовых двигателей.Получив прибыль, Бенц мог начать строительство безлошадного газового экипажа.

Бенц построил три прототипа своего автомобиля в частном порядке к 1888 году, когда Берта решила, что пришло время для прессы. Рано утром Берта взяла последнюю модель и отвезла двух сыновей-подростков 66 миль до дома своей матери. Попутно ей пришлось импровизировать ремонт кожи обуви, заколки для волос и подвязки.

Успешная поездка показала Бенцу, как улучшить машину, и показала сомнительной публике, что автомобили полезны.В следующем году Benz продемонстрировал Model 3 Motorwagen на Всемирной выставке в Париже.

Бенц умер в 1929 году, всего через два года после того, как он объединился с компанией-производителем автомобилей Готлиба Даймлера и образовал то, что сегодня называется Daimler Group, производителем Mercedes-Benz.

Дополнительная информация от Рэйчел Росс, автора Live Science.

Дополнительные ресурсы

.

Смотрите также


Интересующую Вас информацию Вы можете уточнить у наших специалистов, заполнив форму, приведенную ниже. Мы с радостью Вас проконсультируем!
Почта:
Ваше Имя:
Сообщение:
30+5